1. Write a C program to solve algebraic equations by using Method of Bisection.
2. Write a C program to solve algebraic equations by using Method of False position.
3. Write a C program to solve algebraic equations by using Newton Raphson Method.
4. Write a C program to solve linear system of equations by using Gauss Jordan Method.
5. Write a C program to solve linear system of equations by using Gauss Seidal Method.
Experiments 1:
Aim: Program to solve algebraic equations by using Method of Bisection.
Algorithm:
1. Start.
2. Define the function f(x).
3. Initialized x=0.
4. Starting loop for then checking f9x0*f(x+1)>0
if not go to step 5 then checking f(x)==0
5. Set a=x and b=x+1
6. If |b-a|>0.000001 go to step 7
If not then goto step 11
7. Calculate x=(a+b)/2
8. Checking f(a)*f(x)<0
set b=x then print b
if not goto step 9
9. Set a=x print a
10. Print x
11. Stop.
Program:
#include<stdio.h>
#include<math.h>
float f(float);
main()
{
float x,a,b,err=0.00001;
printf("\nEnter values of a and b=");
scanf("%f%f",&a,&b);
if(f(a)*f(b)>0)
printf("\nRoot does not lies between %f and %f",a,b);
else
{
do
{
x=(a+b)/2;
if(f(x)==0)
{
break;
}
else if(f(a)*f(x)<0)
b=x;
else
a=x;
}while(fabs(b-a)>=err);
printf("\nRoot of the equation=%f",x);
}
}
float f(float x)
{
return(x*x-x-1);
}
Experiments 2:
Aim: Program to solve algebraic equations by using Method of False position.
Algorithm:
1. Start.
2. Define the function f(x).
3. Initialized k=0.
4. Input a,b.
5. If f(x)>=0.00001
Then print no solutio goto step 10.
if not go to step 6.
6. Calculate h=[|f(a)|(b-a)]/[|f(a)|+|f(b)|]
x=a+h, k=k+1
7. If f(a)*f(x)<0 then goto step 8
if not go to step 9.
8. Set b=x then print b
9. Set a=x print a
10. Stop.
Program:
#include<stdio.h>
#include<math.h>
float f(float);
main()
{
float x0,x1,x2,err=0.00001;
printf("\nEnter the value of x0: ");
scanf("%f",&x0);
printf("\nEnter the value of x1: ");
scanf("%f",&x1);
if(f(x0)*f(x1)>0)
printf("\nRoot does not lies between %f and %f",x0,x1);
else
{
do
{
x2=x0-((f(x0)*(x1-x0))/(f(x1)-f(x0)));
printf("\nx0=%f, f(x0)=%f, x1=%f, f(x1)=%f, x2=%f, f(x2)=%f",x0,f(x0),x1,f(x1),x2,f(x2));
if(f(x0)*f(x2)<0)
{
x1=x2;
}
else
{
x0 = x2;
}
}while(fabs(f(x2))>err);
printf("\n\nApp.root = %f",x2);
}
}
float f(float x)
{
return(x*x*x-2*x-5);
}
Experiments 3:
Aim: Program to solve algebraic equations by using Newton Raphson Method.
Algorithm:
1. Start.
2. Define the function f(x) and f'(x).
3. Calculate f(x) and f'(x).
4. Initialized k=0.
5. Input a.
6. Set x=a.
7. Set h=-(f(x)/f'(x))
8. Set a=h, x=x+h.
9. If |x-a|>0.00001 then goto step 10
if not go to step 8.
10. Print a
11. Stop.
#include<stdio.h>
#include<math.h>
float f(float);
float df(float);
main()
{
float a,x,h,err=0.00001;
printf("\nEnter initial value=");
scanf("%f",&a);
x=a;
do
{
h=-(f(x)/df(x));
a=x;
x=x+h;
}while(fabs(x-a)>=err);
printf("\nThe approximate value is %f",x);
}
float f(float x)
{
return(x*x*x-8*x-4);
}
float df(float x)
{
return(3*x*x-8);
}
Experiments 2:
Aim: Program to solve linear system of equations by using Gauss Jordan Method.
Algorithm:
1. Start.
2. Input elements in matrix mat[i][j].
3. Set k=mat[1][0]/mat[0][0]
l=mat[2][0]/mat[0][0]
4. Loop for i=0 to 3.
Set mat[1][i]=mat[1][i]-(mat[0][i]*k)
mat[2][i]=mat[2][i]-(mat[0][i]*l)
end loop
5. Set m=mat[2][1]/mat[1][1]
n=mat[0][1]/mat[1][1]
6. Loop for i=0 to 3.
Set mat[2][i]=mat[2][i]-(mat[1][i]*m)
mat[0][i]=mat[0][i]-(mat[1][i]*n)
end loop
7. Print matrix mat[i][j]
8. z=mat[2][3]/mat[2][2]
y=(mat[1][3]-mat[2][2]*z)/mat[1][1]
x=(mat[0][3]-mat[0][2]*z)/mat[0][1]
9. Stop.
#include<stdio.h>
void make1( float a[][20],int, int,int );
void make0( float a[][20],int, int,int );
void show(float a[][20],int r,int c);
int rankA(float a[][20],int r);
int rankAB(float a[][20],int r,int c);
main()
{
float a[ 20 ][ 20 ];
int r,c,i,j;
printf("\nEnter number of variables=");
scanf("%d",&r);
c=r+1;
for(i=0;i<r;i++)
{
for(j=0;j<c-1;j++)
{
printf("\nEnter coefficient of x%d=",j);
scanf("%f",&a[i][j]);
}
for(;j<c;j++)
{
printf("\nEnter constant value=");
scanf("%f",&a[i][j]);
}
}
printf("\nThe augmented matrix is \n");
show(a,r,c);
for(i=0;i<r;i++)
{
make1(a,i,r,c);
show(a,r,c);
make0(a,i,r,c);
show(a,r,c);
}
if(rankA(a,r)==r && rankAB(a,r,c)==r)
{
printf("\nSolutions are\n");
for(i=0;i<r;i++)
printf("x%d%d=%f\t",i,i,a[i][c-1]);
}
else if(rankA(a,r)==rankAB(a,r,c))
printf("\nInfinite solutions\n");
else
printf("\nNo solutions\n");
}
int rankA(float a[][20],int r)
{
int rnk=0,i,j;
for(i=0;i<r;i++)
{
if(a[i][i]!=0)
rnk++;
}
return rnk;
}
int rankAB(float a[][20],int r,int c)
{
int rnk=0,i,j;
for(i=0;i<r;i++)
{
if(a[i][i]!=0)
rnk++;
else if(a[i][c]!=0)
rnk++;
}
return rnk;
}
void show(float a[][20],int r,int c)
{
int i,j;
for(i=0;i<r;i++)
{
for(j=0;j<c-1;j++)
{
printf("%20f",a[i][j]);
}
printf(" | %20f",a[i][j]);
printf("\n");
}
printf("\n");
}
void make1( float a[][20], int i,int r,int c )
{
float t=a[i][i];
int j=i;
printf("\nMaking 1\n");
if(t==0)
return;
for(j=i;j<c;j++)
{
a[i][j]=a[i][j]/t;
}
}
void make0( float a[][20], int k,int r,int c )
{
int i,j;
float temp;
printf("\nMaking 0\n");
for(i=0;i<r;i++)
{
if(i!=k)
{
temp=a[i][k];
for(j=k;j<c;j++)
{
a[i][j]=a[i][j]-a[k][j]*temp;
}
}
}
}
Experiments 2:
Aim: Program to solve linear system of equations by using Gauss Seidal Method.
Algorithm:
1. Start.
2. Input elements in matrix mat[i][j].
3. Loop for i=0 to 4.
4. If i=0 then goto step 5
if not then goto step 6.
5. Set x=fun1(0,0) goto A
y=fun2(x,0) goto B
z=fun3(x,y) goto C
then goto step 7
6. Set x=fun1(y,z) goto 1
y=fun2(x,z) goto 2
z=fun3(x,y) goto 3
then goto step 7
7. Print x,y,z
8. Stop.
#include<stdio.h>
#include<math.h>
void show(float a[][200],int r);
main()
{
float a[200][200],err,aerr=0.00001,x[200]={0},maxerr,t;
int r,i,j,maxitr=10,itr,s;
printf("\nEnter number of variables=");
scanf("%d",&r);
for(i=0;i<r;i++)
{
for(j=0;j<r;j++)
{
printf("\nEnter coefficient of x%d=",j);
scanf("%f",&a[i][j]);
}
printf("\nEnter constant value=");
scanf("%f",&a[i][r]);
}
printf("\nThe augmented matrix is \n");
show(a,r);
printf("Iteration\t");
for(i=0;i<r;i++)
printf(" x[%2d] ",i+1);
printf("\n");
for(itr=1;itr<=maxitr;itr++)
{
maxerr=0;
for(i=0;i<r;i++)
{
s=0;
for(j=0;j<r;j++)
{
if(j!=i)
{
s+=a[i][j]*x[j];
}
}
t=(a[i][r]-s)/a[i][i];
err=fabs(x[i]-t);
if(err>maxerr)
maxerr=err;
x[i]=t;
}
printf("%5d ",itr);
for(i=0;i<r;i++)
{
printf("%15f",x[i]);
}
printf("\n");
if(maxerr<aerr)
{
printf("Converges in %3d Iteration\n",itr);
for(i=0;i<r;i++)
{
printf("x[%d]=%f",i,x[i]);
}
return 0;
}
}
printf("\nSolution does not converge, needs more iteration \n");
}
void show(float a[][200],int r)
{
int i,j;
for(i=0;i<r;i++)
{
for(j=0;j<r;j++)
{
printf("%20f",a[i][j]);
}
printf(" %20f",a[i][r]);
printf("\n");
}
printf("\n");
}
2. Write a C program to solve algebraic equations by using Method of False position.
3. Write a C program to solve algebraic equations by using Newton Raphson Method.
4. Write a C program to solve linear system of equations by using Gauss Jordan Method.
5. Write a C program to solve linear system of equations by using Gauss Seidal Method.
Experiments 1:
Aim: Program to solve algebraic equations by using Method of Bisection.
Algorithm:
1. Start.
2. Define the function f(x).
3. Initialized x=0.
4. Starting loop for then checking f9x0*f(x+1)>0
if not go to step 5 then checking f(x)==0
5. Set a=x and b=x+1
6. If |b-a|>0.000001 go to step 7
If not then goto step 11
7. Calculate x=(a+b)/2
8. Checking f(a)*f(x)<0
set b=x then print b
if not goto step 9
9. Set a=x print a
10. Print x
11. Stop.
Program:
#include<stdio.h>
#include<math.h>
float f(float);
main()
{
float x,a,b,err=0.00001;
printf("\nEnter values of a and b=");
scanf("%f%f",&a,&b);
if(f(a)*f(b)>0)
printf("\nRoot does not lies between %f and %f",a,b);
else
{
do
{
x=(a+b)/2;
if(f(x)==0)
{
break;
}
else if(f(a)*f(x)<0)
b=x;
else
a=x;
}while(fabs(b-a)>=err);
printf("\nRoot of the equation=%f",x);
}
}
float f(float x)
{
return(x*x-x-1);
}
Experiments 2:
Aim: Program to solve algebraic equations by using Method of False position.
Algorithm:
1. Start.
2. Define the function f(x).
3. Initialized k=0.
4. Input a,b.
5. If f(x)>=0.00001
Then print no solutio goto step 10.
if not go to step 6.
6. Calculate h=[|f(a)|(b-a)]/[|f(a)|+|f(b)|]
x=a+h, k=k+1
7. If f(a)*f(x)<0 then goto step 8
if not go to step 9.
8. Set b=x then print b
9. Set a=x print a
10. Stop.
Program:
#include<stdio.h>
#include<math.h>
float f(float);
main()
{
float x0,x1,x2,err=0.00001;
printf("\nEnter the value of x0: ");
scanf("%f",&x0);
printf("\nEnter the value of x1: ");
scanf("%f",&x1);
if(f(x0)*f(x1)>0)
printf("\nRoot does not lies between %f and %f",x0,x1);
else
{
do
{
x2=x0-((f(x0)*(x1-x0))/(f(x1)-f(x0)));
printf("\nx0=%f, f(x0)=%f, x1=%f, f(x1)=%f, x2=%f, f(x2)=%f",x0,f(x0),x1,f(x1),x2,f(x2));
if(f(x0)*f(x2)<0)
{
x1=x2;
}
else
{
x0 = x2;
}
}while(fabs(f(x2))>err);
printf("\n\nApp.root = %f",x2);
}
}
float f(float x)
{
return(x*x*x-2*x-5);
}
Experiments 3:
Aim: Program to solve algebraic equations by using Newton Raphson Method.
Algorithm:
1. Start.
2. Define the function f(x) and f'(x).
3. Calculate f(x) and f'(x).
4. Initialized k=0.
5. Input a.
6. Set x=a.
7. Set h=-(f(x)/f'(x))
8. Set a=h, x=x+h.
9. If |x-a|>0.00001 then goto step 10
if not go to step 8.
10. Print a
11. Stop.
#include<stdio.h>
#include<math.h>
float f(float);
float df(float);
main()
{
float a,x,h,err=0.00001;
printf("\nEnter initial value=");
scanf("%f",&a);
x=a;
do
{
h=-(f(x)/df(x));
a=x;
x=x+h;
}while(fabs(x-a)>=err);
printf("\nThe approximate value is %f",x);
}
float f(float x)
{
return(x*x*x-8*x-4);
}
float df(float x)
{
return(3*x*x-8);
}
Experiments 2:
Aim: Program to solve linear system of equations by using Gauss Jordan Method.
Algorithm:
1. Start.
2. Input elements in matrix mat[i][j].
3. Set k=mat[1][0]/mat[0][0]
l=mat[2][0]/mat[0][0]
4. Loop for i=0 to 3.
Set mat[1][i]=mat[1][i]-(mat[0][i]*k)
mat[2][i]=mat[2][i]-(mat[0][i]*l)
end loop
5. Set m=mat[2][1]/mat[1][1]
n=mat[0][1]/mat[1][1]
6. Loop for i=0 to 3.
Set mat[2][i]=mat[2][i]-(mat[1][i]*m)
mat[0][i]=mat[0][i]-(mat[1][i]*n)
end loop
7. Print matrix mat[i][j]
8. z=mat[2][3]/mat[2][2]
y=(mat[1][3]-mat[2][2]*z)/mat[1][1]
x=(mat[0][3]-mat[0][2]*z)/mat[0][1]
9. Stop.
#include<stdio.h>
void make1( float a[][20],int, int,int );
void make0( float a[][20],int, int,int );
void show(float a[][20],int r,int c);
int rankA(float a[][20],int r);
int rankAB(float a[][20],int r,int c);
main()
{
float a[ 20 ][ 20 ];
int r,c,i,j;
printf("\nEnter number of variables=");
scanf("%d",&r);
c=r+1;
for(i=0;i<r;i++)
{
for(j=0;j<c-1;j++)
{
printf("\nEnter coefficient of x%d=",j);
scanf("%f",&a[i][j]);
}
for(;j<c;j++)
{
printf("\nEnter constant value=");
scanf("%f",&a[i][j]);
}
}
printf("\nThe augmented matrix is \n");
show(a,r,c);
for(i=0;i<r;i++)
{
make1(a,i,r,c);
show(a,r,c);
make0(a,i,r,c);
show(a,r,c);
}
if(rankA(a,r)==r && rankAB(a,r,c)==r)
{
printf("\nSolutions are\n");
for(i=0;i<r;i++)
printf("x%d%d=%f\t",i,i,a[i][c-1]);
}
else if(rankA(a,r)==rankAB(a,r,c))
printf("\nInfinite solutions\n");
else
printf("\nNo solutions\n");
}
int rankA(float a[][20],int r)
{
int rnk=0,i,j;
for(i=0;i<r;i++)
{
if(a[i][i]!=0)
rnk++;
}
return rnk;
}
int rankAB(float a[][20],int r,int c)
{
int rnk=0,i,j;
for(i=0;i<r;i++)
{
if(a[i][i]!=0)
rnk++;
else if(a[i][c]!=0)
rnk++;
}
return rnk;
}
void show(float a[][20],int r,int c)
{
int i,j;
for(i=0;i<r;i++)
{
for(j=0;j<c-1;j++)
{
printf("%20f",a[i][j]);
}
printf(" | %20f",a[i][j]);
printf("\n");
}
printf("\n");
}
void make1( float a[][20], int i,int r,int c )
{
float t=a[i][i];
int j=i;
printf("\nMaking 1\n");
if(t==0)
return;
for(j=i;j<c;j++)
{
a[i][j]=a[i][j]/t;
}
}
void make0( float a[][20], int k,int r,int c )
{
int i,j;
float temp;
printf("\nMaking 0\n");
for(i=0;i<r;i++)
{
if(i!=k)
{
temp=a[i][k];
for(j=k;j<c;j++)
{
a[i][j]=a[i][j]-a[k][j]*temp;
}
}
}
}
Experiments 2:
Aim: Program to solve linear system of equations by using Gauss Seidal Method.
Algorithm:
1. Start.
2. Input elements in matrix mat[i][j].
3. Loop for i=0 to 4.
4. If i=0 then goto step 5
if not then goto step 6.
5. Set x=fun1(0,0) goto A
y=fun2(x,0) goto B
z=fun3(x,y) goto C
then goto step 7
6. Set x=fun1(y,z) goto 1
y=fun2(x,z) goto 2
z=fun3(x,y) goto 3
then goto step 7
7. Print x,y,z
8. Stop.
#include<stdio.h>
#include<math.h>
void show(float a[][200],int r);
main()
{
float a[200][200],err,aerr=0.00001,x[200]={0},maxerr,t;
int r,i,j,maxitr=10,itr,s;
printf("\nEnter number of variables=");
scanf("%d",&r);
for(i=0;i<r;i++)
{
for(j=0;j<r;j++)
{
printf("\nEnter coefficient of x%d=",j);
scanf("%f",&a[i][j]);
}
printf("\nEnter constant value=");
scanf("%f",&a[i][r]);
}
printf("\nThe augmented matrix is \n");
show(a,r);
printf("Iteration\t");
for(i=0;i<r;i++)
printf(" x[%2d] ",i+1);
printf("\n");
for(itr=1;itr<=maxitr;itr++)
{
maxerr=0;
for(i=0;i<r;i++)
{
s=0;
for(j=0;j<r;j++)
{
if(j!=i)
{
s+=a[i][j]*x[j];
}
}
t=(a[i][r]-s)/a[i][i];
err=fabs(x[i]-t);
if(err>maxerr)
maxerr=err;
x[i]=t;
}
printf("%5d ",itr);
for(i=0;i<r;i++)
{
printf("%15f",x[i]);
}
printf("\n");
if(maxerr<aerr)
{
printf("Converges in %3d Iteration\n",itr);
for(i=0;i<r;i++)
{
printf("x[%d]=%f",i,x[i]);
}
return 0;
}
}
printf("\nSolution does not converge, needs more iteration \n");
}
void show(float a[][200],int r)
{
int i,j;
for(i=0;i<r;i++)
{
for(j=0;j<r;j++)
{
printf("%20f",a[i][j]);
}
printf(" %20f",a[i][r]);
printf("\n");
}
printf("\n");
}
No comments:
Post a Comment